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I. INTRODUCTION 

The purpose of this dissertation is to document research 

in the area of electrical wave filters, electrical circuits 

which discriminate or separate electrical waves on the basis 

of their frequencies of oscillation. The research focuses on 

passive 3-port filters, which have one input port and two 

output ports. The goal of this research was to discover or 

invent 3-port filters which have the Chebyshev or elliptic 

frequency response characteristic. Previous work by other 

researchers has resulted in 3-port filters which have 

maximally-flat or Butterworth frequency response 

characteristics. The research presented in this dissertation 

was intended to be an extension of this previous work. 

This research stays within the confines of passive, 

physically realizable filters, which can be built using 

physical components: resistors, capacitors and inductors. 

Research in this field has dwindled in recent years, due in 

large part to the common use of digital computers and digital 

signal processing technology. The use of digital signal 

processing theory in conjunction with a digital computer 

allows the designer to create almost any frequency response 

characteristic, since the design is not restricted to 

mathematical functions which are based on real, positive 
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coefficients given by the physical components. The challenge 

presented by passive filters is to find the conditions under 

which the desired result can be achieved without the benefit 

of the relaxed constraints offered by digital signal 

processing. Even with the rapid advancement of digital signal 

processing as the method of choice in most modern electronic 

systems, passive filtering still has uses in the higher 

frequency design areas. Digital computers are not yet fast 

enough to perform the operations necessary to filter signals 

at frequencies higher than a few megahertz, and these filters 

must be designed using the traditional methods. Therefore, 

research in this area is still warranted for improved 

electrical systems, as well as the extension of prior theory. 
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II. STATEMENT OF THE PROBLEM 

A. 3-Port Filters 

1. Description 

Three-port filters, as their name implies, have three 

pairs of terminals, each terminal pair acting as a port. A 

terminal pair acts as a port if all of the current entering 

one of the terminals in the pair is returned through the other 

terminal of the pair. Each port in the 3-port filter may be 

terminated with a load impedance and a voltage source or a 

current source. Voltage sources are generally connected in 

series with the load impedance (Thevenin equivalent), while 

current sources are connected in parallel with the impedance 

(Norton equivalent). An example of a very general 3-port 

filter is shown in figure 2.1. This figure shows the two 

types of load and source connections as well as the port 

naming conventions which will be used throughout this 

dissertation. All three ports are not required to possess a 

source. At least one of the ports usually is driven by a 

source, and the connection at the remaining ports is 

arbitrary. This research is focused on 3-port filters which 

have one port driven with a voltage source and a series 

resistance. The remaining ports are not driven, but are 

terminated with a load resistor. Since only one port is 
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n 

Port 1 

Port 3 

Port 2 

Figure 2.1. 3-port filter with load terminations 

driven, power generally flows from the driven port to the two 

ports which are resistively terminated. Thus, the two 

separate pathways, from the driven port to the two undriven 

ports, constitute a 3-port connection which is made up of two 

2-port filters connected in parallel at the input ports. 

Figure 2,2 shows a simplified view of this connection. Since 

the 3-ports can be viewed as a parallel connection of 2-ports, 

the 3-ports are commonly called filter pairs. 

2. Uses and interest 

Filter pairs are useful whenever there is a need to split 

the frequency spectrum of the input signal into two disparate 

output frequency spectra. Usually, and specifically in this 
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V, 1 V-

LDVPASS FILTER LDVPASS FILTER 1  LDVPASS FILTER 

HIGHPASS FILTER HIGHPASS FILTER 1  HIGHPASS FILTER 
*3 

Figure 2.2. Simplified diagram of 3-port filter 

research, one of the two filters will pass the frequencies 

below a predetermined frequency, and the other filter will 

pass the frequencies above the frequency. The former filter 

is termed a lowpass filter, and the latter is termed a 

highpass filter. This frequency separation is shown for a 

Butterworth filter pair in figure 2.3. The frequency response 

of the output of the lowpass filter and the highpass filter 

are shown, with the lowpass response on the left side of the 

graph. 

Filter pairs are used in telephone systems, wherein 

several filter pairs are used to form a filter group. These 

filter groups are used to separate a single-channel line into 

a multi-channel line to carry several conversations 
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LOWPASS/ 
FILTER 

WIGHPASS 
FILTER 

MAGNITUDE 
OF 

OUTPUT 

FREQUENCY, RADIANS PER SECOND 

Figure 2.3. Plot of transducer power gain vs. frequency 
of Butterworth filter pair to show frequency 
separation caused by lowpass and highpass 
filters 

simultaneously. The entire North American telephone network, 

as well as most of the systems in the world, is constructed in 

this manner. 

3. Butterworth, Chebyshev and elliptic characteristics 

The Butterworth, Chebyshev and elliptic filters are all 

approximations to the ideal, or "brickwall", filter. The 

frequency response of the ideal filter is flat with no 
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attenuation until a predetermined frequency, and is equal to 

zero beyond that frequency. The ideal frequency response is 

impossible to achieve, and the three methods listed above are 

the three most-often discussed methods for obtaining 

approximations to the ideal response. 

A convenient method of characterizing filters is by the 

form of their transducer power gain, |t(<i))|^. The transducer 

power gain is the ratio of the average power delivered to the 

load to the maximum average power available at the source. 

The maximum available power is a function of the source and 

load impedances of the filter, and the transducer power gain 

expression automatically normalizes the effect of the load by 

using the ratio of delivered power to available power. The 

Butterworth, Chebyshev and elliptic filters share a common 

mathematical structure for the transducer power gain: 

| T ( O ) )  | 2  =  5 5 -  ( 2 . 1 )  

1 + £%(«) 

where HQ represents the magnitude of the peak of the filter 

response, e is a factor which controls the magnitude of the 

ripple in the filter response, and P„(o)) is a polynomial or 

rational function that dictates the basic response of the 

filter. The characteristics of the three types of filters are 
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described in detail in the literature (21, ch.2), and are 

summarized in the following sections. 

Butterworth filters: The Butterworth filter is 

characterized as having no ripple in its frequency response 

characteristic. It is also referred to as having a "maximally 

flat" characteristic, since for an nth-order filter, the first 

n-1 derivatives of magnitude with respect to frequency 

evaluate to zero at the extreme passband frequency. The 

passband for a Butterworth lowpass filter is the range from 

zero frequency (DC) to the cutoff frequency (frequency at 

which the output power has decreased to 50% of the maximum). 

The passband for the highpass filter ranges from the cutoff 

frequency to infinity. For a 3rd-order Butterworth lowpass 

filter, the first 2 derivatives of |T(o)| at zero frequency 

(DC) evaluate to zero. The frequency response characteristic 

appears very flat at DC, and decreases monotonically with 

frequency. Since there can be no ripple in the Butterworth 

characteristic, the ripple factor, e, is set to 1. The 

approximation polynomial, P^^(s) , is = s^". The Butterworth 

transducer power gain is then: 

I  f ((d) I ^Butterworth = (2.2) 
1 + (if" 
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When the sinusoidal steady-state response of a filter is 

studied, the frequency variable, s, is restricted to the real-

frequency, or imaginary, axis of the s-plane. This is because 

the Laplace transform of the sinusoid contains only real-

frequency poles. Since the Laplace transform of the driving 

function contains only real-frequency components, the 

frequency variable used in the sinusoidal analysis needs no 

real parts. The substitution s = ju is made in the network 

functions to allow sinusoidal analysis. When this 

substitution is made in (2.2), the result is: 

The first response in figure 2.4 shows the Butterworth 

magnitude response. It can be seen to decrease monotonically 

with frequency. 

Chebyshev filters: The Chebyshev filter is characterized 

as having ripples of equal magnitude in the passband only. 

The ripples are variations in the passband magnitude, and are 

the direct result of using a Chebyshev polynomial of the first 

kind as the approximation polynomial. The second response in 

figure 2.4 shows the passband ripple characteristic. The 

Chebyshev polynomial is designated C^fw), and is defined as: 
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Cn(w) = cos(n cos"' q) for 0 < w < 1 (2.4) 

C„((«>) = cosh(n cosh"' w) for o)> 1. 

The ripple factor, e, determines the degree to which the 

response can vary in the passband. A value of e = 0.34931, 

for example, yields a ripple magnitude of 0.5 decibels, which 

is the same as 5.6% peak-to-valley variation in voltage or 

current. The transducer power gain of the Chebyshev filter is 

then: 

I  ̂  I  ̂Chebyshev = ^ (2.5) 
1 + 

When the frequency substitution s = jw is made to allow 

sinusoidal response analysis, the Chebyshev transducer power 

gain becomes: 

r(s)T(-s)|s.ju= ^ (2.6) 
1 f e2<(-js) 

Elliptic filters: The elliptic filter was originally 

derived by Cauer, and is sometimes referred to as a Cauer (15) 

filter. The elliptic frequency response is characterized as 

having ripples of equal magnitude in its passband as well as 

in its stopband. The stopband in the elliptic filter case is 
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defined as the region beyond the frequency at which the 

magnitude of the response has decreased to the stopband ripple 

value. The stopband does not start where the passband ends. 

The region between the passband and the stopband for the 

elliptic filter is referred to as the transition region. The 

magnitude of the ripples in the passband are not, in general, 

equal to those in the stopband. The third response in figure 

2.4 shows the elliptic response. 

The elliptic frequency response characteristic is 

obtained as a consequence of using a rational function, 

designated F^fw), as the approximation polynomial. The 

rational function is a Chebyshev rational function, and is 

calculated from the Jacobian elliptic integral functions. The 

theory of these functions is complex, and the reader is 

referred to Chen (17, ch. 3). In general, however, the 

approximating function, F(w), can be written as: 

( 2 . 7 )  

for n even, and 

( 2 . 8 )  
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for n odd. The sn and sn"^ terms are the natural and inverse 

forms of the elliptic sine function, respectively. The terms 

K, and K are defined by: 

K, = K(ki) = F(ki,7r/2) (2.9) 

K = K(k) = F(k,n/2) (2.10) 

where F(x,n) is the complete elliptic integral of the first 

kind of modulus x. The values for this function are tabulated 

with interpolation instructions in Abramowitz and Stegun (1). 

The parameters k and k, are the steepness factor of the 

transition region, and the gain constant, respectively. The 

transducer power gain for the elliptic filter is then: 

I f (GA) [^elliptic = (2.11) 
1 + €%(W) 

The elliptic magnitude response for real-frequency analysis 

is: 

T(s)T(-s)|,.jw= h (2.12) 
1 + eX(-is) 

Figure 2.4 shows frequency response characteristics for 

the transducer power gains for the Butterworth, Chebyshev and 
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elliptic filters. It can be seen that the transition region 

steepness for the elliptic filter is greater than that for the 

Chebyshev , and the same is true for the Chebyshev when 

compared to the Butterworth. The ripples in the passband of 

the Chebyshev and elliptic characteristics, and in the 

stopband of the elliptic characteristic are evident. 

BUTTERWORTH 
RESPONSE 

CHEBYSHEV 
RESPONSE 

ELLIPTIC 
RESPONSE 

MAGNITUDE 

OF 

RESPONSE 

0 3 

10 to . 1  10 

FREQUENCY, RADIANS PER SECOND 

Figure 2.4. Frequency response characteristics for three 
classic filter types 

Each of the filter responses can be chosen for a 

particular application based on their notable characteristics. 

Generally, passband ripples are the deciding factor between 

the Butterworth and Chebyshev (or elliptic) characteristic. 

If a smooth response is desired, the Butterworth response is 

chosen. As previously mentioned, the Chebyshev and elliptic 
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responses both have sharper attenuation characteristics in the 

transition region between the passband and the stopband. This 

fact is important in some applications, especially in those 

applications in which efficient space usage is important. In 

such applications, a filter which develops the greatest 

attenuation with the fewest components is most valuable. 

These are the applications in which the Chebyshev and elliptic 

characteristics are important, and the central reason that 

this research was performed. It is important to have the 

Chebyshev and elliptic theory be up-to-date with the 

Butterworth theory, so that filter designers always have a 

choice of sharper transition filters than the Butterworth 

filters. 

B. Prior work in Filter Pairs 

1. Constant resistance filters 

Norton (23) originally broke ground on filter pairs in 

his 1937 article on constant resistance filters. Constant 

resistance filters are characterized as having an input 

impedance which does not vary with frequency. Examples of 

filter structure and associated element values which yield 

constant input impedance filters are shown in figure 2.5. 

In the cases cited by Norton, each had a constant, real input 

impedance (input resistance). A natural consequence of 
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Z,.22-R2 P I 

Zii«t 

LATTICE SHUNT 

Figure 2.5. Examples of filter structures with constant 
input resistance 

constant resistance 2-ports is that when two or more of them 

are connected in parallel at the input port, the resulting 

multiport network has again a constant input resistance. By 

connecting a lowpass constant resistance 2-port in parallel 

with a highpass constant resistance 2-port which has the same 

input resistance, Norton designed the first constant 

resistance filter pair. These filter pairs were used in a 

variety of applications in the telephone system. Since the 

entire telephone system is designed to have a characteristic 

impedance of 600 ohms, the filters designed by Norton were 

impedance-scaled to 600 ohms and used in the system directly. 

Another natural consequence of the constant resistance filter 

pairs is that the attenuation at the crossover frequency, 
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which is the frequency at which the outputs of both filters 

are equal, is necessarily 3 dB. In systems which require the 

isolation between the two outputs to be greater than 3 dB, the 

constant resistance filters are not a good choice, and an 

alternate must be chosen. The alternate lies in the area of 

nonconstant impedance filters. 

2. Butterworth filter pairs 

As a means of avoiding the problem of lack of separation 

at the crossover frequency, the advantage of constant input 

resistance had to be abandoned. The convenience added to the 

design of whole systems of filters by the constant input 

impedance had to be given up in favor of filters which were 

not constrained by the input resistance characteristics. The 

result was a set of filters which had the Butterworth 

frequency response characteristic, but which also had input 

impedances which varied with frequency. Belevitch (9) and Zhu 

(26) worked independently in this area, and discovered 

different ways of designing Butterworth filter pairs. 

C. Extension of Prior Work 

1. Chebyshev and elliptic responses 

Filter theory texts invariably include complete 

developments for the Butterworth, Chebyshev and elliptic 
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approximations to the ideal lowpass filter. As a result, these 

three approximation techniques have become the "classic" 

filter techniques. Many tables of element values exist for 

the prototype versions of all three of these techniques (20). 

When a new method or variation is discovered for one of the 

classic filter approximations, comparable results are usually 

developed for the other approximations. The work by Belevitch 

and Chen covered only the Butterworth approximation technique. 

It was left to other researchers to develop the nonconstant 

impedance filter pairs for the Chebyshev and elliptic cases. 

The goal undertaken in this research was to show that an 

approximation to the Chebyshev and elliptic frequency 

responses could be achieved, and to show a means of designing 

the filter pairs with passive elements. 

2. Complementary filter pairs 

In order to limit the scope of the research to permit a 

reasonable time frame for completion, the research 

concentrated in the area of complementary filter pairs. In 

this arrangement, the lowpass and highpass filter transfer 

functions are reciprocal functions of frequency, meaning that 

if the lowpass filter transfer function is F(s), where s=a+jw 

is the complex frequency variable, the transfer function of 

the highpass filter is given by F(l/s). 
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This assumption also restricts the research to filters of 

equal order. For example, if the lowpass filter is third-

order, the highpass filter mate is also third-order. Further 

work can be done to investigate the effects of uneven order on 

the frequency response of the filter pairs. 

D. Synthesis of 3-port Filter Pairs 

1. Current practice 

The primary goal of the research was to develop a method 

for expressing the Chebyshev and elliptic filter pairs in some 

form of network function, such as a driving-point impedance 

function, or as a transfer function. The prior work used the 

scattering parameters as the means of specifying the 

characteristics of the filter pairs, so the same method was 

chosen for use in this research. A method was developed which 

describes the transmission and reflection characteristics of 

the filter pairs. Once these characteristics are known, the 

filter pair must be realized, which means it must be created 

from passive elements, as mentioned earlier. 

The 3-port networks are characterized by their scattering 

parameters, which are the reflection and transmission 

coefficients for each of the three ports. The method used to 

synthesize the 3-ports can use either the reflection 
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coefficient or the transmission coefficient as its starting 

point. 

When the reflection coefficient of the 3-port is used as 

a starting point, a simple relationship yields the driving-

point input admittance from the reflection coefficient: 

where S,, is the reflection coefficient and is the input 

admittance. The input admittance is then split into two 

parts: the lowpass 2-port and the highpass 2-port. Synthesis 

is then carried out on the two separate 2-ports. A 

fundamental theory in network synthesis describes the 

necessary and sufficient conditions for network realizability: 

Theorem 2.1 (Darlington's Theory (19)): A given rational 

function Z(s) (Y(s)) is realizable as the driving-point 

impedance (admittance) of a passive lumped lossless reciprocal 

2-port terminated in a resistor if and only if Z(s) (Y(s)) is 

a positive real function. 

Definition 2.1 (Positive real function); A rational 

function, F(s) , of the complex frequency s = a+jo) is positive 

real if and only if the following conditions are satisfied: 
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(i) F (s) is real when s is real. 

(ii) F(s) has no poles in the open RHP. 

(iii) Poles of F(s) on the ju axis, if they exist, are 

simple, and residues evaluated at these poles are 

real and positive. 

(iv) Re {F(j(i))} >0 for all w. 

Once the 2-port input admittance is known, and if it is 

positive real, two methods are applicable for the synthesis. 

The first method, Darlington's method (3,19), uses an elegant 

relationship between the impedance and admittance parameters 

(z- and y-parameters) of the network, and the odd and even 

parts of the input impedance of the network. With these 

relationships, the realization is carried out by direct 

substitution. The second method is the cascade method (2,12). 

This method realizes the complete 2-port by successive 

reductions of the input impedance into a subnetwork with a 

positive real remainder. This process is continued until the 

input impedance function has been exhausted. In the general 

case, transformers may be required. 

If one of the transmission coefficients of the 3-port 

network is used as a starting point, then relationships 

between the transmission coefficients and the voltage transfer 

ratios of the separate 2-ports must be developed. This is 
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done taking into account the specific structure of the 3-port 

network. Once this has been accomplished, then well-known 

relationships are used to express the transfer function in 

terms of the y-parameters. Then Cauer ladder synthesis (18) 

may be applied to realize the 2-ports individually. This 

method is similar to the cascade method, in that it 

successively reduces the driving point impedance of the 2-port 

to a constant, except that it works to realize the zeros of Zg^ 

and Zgg simultaneously. This results in slightly different 

logical processes between the two methods. The synthesis may 

require a variation of the Cauer ladder synthesis, in which 

parallel ladders are synthesized to realize complex 

transmission zeros in the 2-ports. 

An alternative to the Cauer ladder synthesis can be used 

after the voltage transfer ratios for the two 2-ports are 

known. The methods of Bode or Brune and Gewertz (18) can be 

used to transform the transfer impedances Zj, and Zj,, which are 

easily derived from the voltage transfer ratios, into the 

input impedance for the two 2-ports. Then, Darlington 

synthesis can be carried out to realize the 2-ports. 

2. Transformerless realizations 

A concern, although not a central issue, to this research 

was to find synthesis methods which resulted in networks which 
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do not use transformers. Transformers are expensive, 

difficult to manufacture to tight tolerances, and bulky 

compared to modern circuit elements. It is therefore 

desirable to find ways to avoid their use in modern circuits. 
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III. LITERATURE REVIEW 

The research in the area of filter pairs and filter 

groups is, fortunately, very well documented and easy to 

follow. Most of the research was done during the I960's and 

later, and as a result, is documented in computer databases 

such as Compandex and NTIS. The search for prior art in this 

area of 3-port synthesis was done by an electronic search 

through several databases using appropriate keywords. The 

electronic search yielded the paper which suggested this 

research, as well as several other important papers in this 

area. More importantly, the search yielded no citations which 

suggested that the research in this dissertation has already 

been done or is in progress by someone. Following are 

sections which document the research to be done in this area 

and the base for this study. 

A. Norton's Constant Resistance Filter Pairs 

The use of constant resistance networks was widespread in 

the American Telephone system when Norton wrote his famous 

paper. Otto Zobel (27) had written a paper several years 

earlier which defined the use of constant resistance filters 

for use in the telephone system to adjust signals for phase 

delays and distortion caused by long transmission paths. The 
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concept of groups and supergroups, both terms referring to 

multiplexing many telephone signals onto one transmission 

line, was being discussed, and Norton concluded that the 

constant resistance filters were the best building block to 

use in the system. In the telephone system at that time, the 

filters were always used singly, and Norton set out to find 

ways of connecting the filters in parallel so that the 

networks could be used in the system of groups and 

supergroups. 

Norton pointed out in his paper that the constant 

resistance filter pairs exhibited a necessary 3 dB insertion 

loss at the crossover frequency. His solution to this problem 

was to use more stages of the filter pairs. 

B. Bennett's Filter Pairs 

Bennett (11) investigated the effect of connecting the 

prototype 2-port lowpass and highpass filters in parallel, 

without regard to the loading effects each filter presents to 

the other. His results are valuable in that they point out 

that in some cases, the basic characteristics of either 2-port 

filter in the pair are lost due to the mutual loading effect 

of the filters when they are connected in parallel. His most 

important result is that when the corner frequencies of the 

prototype lowpass and highpass filters are very disparate, 
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the two filters behave as if they are not connected 

together. In this case, the input impedance is not constant, 

and the filter pair is a case covered in Belevitch's later 

paper. 

C. Belevitch's Filter Pairs 

Vitold Belevitch gathered all the articles established 

after World War II and summarized their contents in a 1958 

paper (4). This paper is very interesting because it ties 

together the results from many researchers who were operating 

independently, and ultimately discovered the same principles. 

Image parameter design theory, for example, was the dominant 

method used for filter design in the years before World War 

II, and insertion-loss theory development started following 

the war. Belevitch points out that the developments of both 

were becoming very similar, and that a unified theory of 

filter design could be close at hand. The work done by 

Norton, Bennett, Zobel, Cauer, and many other researchers is 

discussed. Germane to this research is the fact that Norton's 

work was critiqued to some extent, and this summary adds a 

sense of history to the work done for this dissertation. 

Carlin (13) wrote the initial paper which summarized the 

use of the scattering parameters in network analysis and 

synthesis. Belevitch (5) worked at the same time to define 
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how the scattering parameters could be used to simplify the 

derivation of the network theories, and how the scattering 

parameters predicted results previously unknown in network 

theory. Carlin carried on to write texts on circuit theory, 

and Belevitch (6) carried on to explore the use of the 

scattering parameters in network synthesis. The primary focus 

of his work was in using the scattering parameters to 

predetermine the responses of the networks. 

Belevitch saw a need for a filter pair which was at once 

canonical, having as few components as possible for the 

desired results, and having a greater insertion loss than 3 dB 

at the crossover frequency. Several of his previous papers 

had dealt with the development of the theory of scattering 

parameters of networks (7). He then wrote several papers 

dealing with the application of the scattering parameter 

design methods to filter pairs (8). These papers are 

important to this research, because in them Belevitch develops 

the relationships of the scattering parameters to the 3-port 

filters. Further developments discussed the synthesis of 

one-port filters, which can be treated as 3-port filters with 

resistive terminations. 
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D. Belevitch's Butterworth Filter Pairs 

After developing the theory underlying the use of the 

scattering parameters as a starting point for the synthesis of 

3-port filters, Belevitch (9) developed the theory of 3-port 

filters which have Butterworth filter pairs, which are filter 

pairs consisting of a lowpass filter in parallel with a 

highpass filter, each filter having the maximally-flat 

attenuation characteristic in its passband. Developments were 

shown for the cases in which the filters are complementary 

pairs, and in which the filters are of unequal orders. The 

Butterworth filter pairs were shown to be automatically 

complementary when the lowpass and highpass filters are of 

equal order. 

E. Chen and Zhu's Butterworth Diplexers 

Filter pairs are often called diplexers. Chen and Zhu 

(26), independently of Belevitch, developed a method for 

designing Butterworth filter pairs. Their development was 

quite similar to Belevitch's, except that Belevitch's 

derivation was more algebraic, and Chen's was more numerical. 

Both methods assumed that the networks were constructed of 

ladder filters connected in parallel. 
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F. Literature on Network Synthesis 

Half of the work for this dissertation consisted of 

finding a straightforward method for synthesizing the 

Chebyshev and elliptic filter pairs once the scattering 

parameter description was known. Several texts were consulted 

in the effort to do this. Early texts which describe the 

Darlington and cascade syntheses in detail are Van Valkenburg 

(25), Storer (24), Kami (22) and Balabanian (3). Newer 

texts which give a matter-of-fact presentation of these 

methods are Chen (18) and Baher (2). The derivations of the 

methods are not quite so rigorous in these later texts, and 

the lack of distracting detail makes the methods more 

apparent. 

G. Literature on Scattering Parameters 

The concept of scattering parameters used to completely 

characterize a network is very powerful. Many aspects of a 

network's behavior can be readily seen by inspection of the 

scattering matrix for the network. Conversely, with knowledge 

of the relationship of the scattering matrix to the network 

properties, network behavior can be prescribed by the proper 

construction of the scattering matrix. Belevitch used this 

technique in his derivation of the Butterworth 3-ports. He 
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deduced the form of the reflection coefficient scattering 

parameter, and used the form to construct the network. 

Texts which describe the derivation and use of the 

scattering parameters in network theory are Chen (17), Carlin 

and Giordano (14), and Chan (16). Beleyitch's (10) text is 

also a good reference. 
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IV. METHODS AND RESULTS 

A. Scattering Theory of 3-port Networks 

Central to the development of the Chebyshev and elliptic 

3-port filters is the understanding of the scattering 

parameters. The reader is directed to the texts cited in the 

literature review for a complete background in the development 

of the scattering theory. This section will deal only with 

the aspects of the scattering theory which are germane to the 

development of the 3-port networks. The discussion will start 

with the 1-port scattering parameters and will then extend the 

essential theory to 3-port networks. 

1. 1-port scattering parameters 

The foundation for the scattering parameters lies in the 

understanding that an electrical wave, like any harmonic wave, 

can be studied as if it were composed of an incident part and 

a reflected part. The development of the scattering 

parameters starts with the definition of the port voltages and 

currents as incident and reflected components of the total 

voltage and current at the ports. This is illustrated in 

figure 4.1. The voltage and current are assigned subscripts 

to denote the fact that they are either incident or reflected 

waves. In the real world, the terms incident and reflected 
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are meant to indicate the direction of travel for currents: 

currents either enter or exit a port. A similar 

interpretation exists for voltages: voltages are either driven 

into a port or they are impressed at the port by voltages at 

other ports. 

I 

Z<S> 

N 

Figure 4.1. Example of a simple 1-port network showing 
the definitions for the incident and 
reflected currents and voltages 

The total voltage and current at a port is the sum of the 

incident and reflected voltages and currents: 
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V, + Vr = Vtot 

I, - Ir = Itot (4.1) 

The scattering parameters for a 1-port are identified as 

the reflection coefficient and the transmission coefficient. 

The scattering theory basically states that, at any given 

instant, the power entering (incident upon) and leaving 

(reflected from) the network must equal the total power 

supplied to the network. This is also stated: All of the 

power supplied to a network must be either reflected from the 

network or transmitted into the network. With the voltage and 

current definitions given in figure 4.1, the reflection 

coefficient for the 1-port is given as; 

: i: 

The transmission coefficient, T ( S ), is related to the 

reflection coefficient by the power-conservation property 

stated earlier; 

p2(s) + T^(S) = 1 (4.3) 
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or 

T^(S) = 1 - p2(s) (4.4) 

This relationship is the main defining relationship of 

interest to this research. Other considerations for the 

scattering parameters arise from the power distribution 

through the network. Since the network is passive, and can 

therefore add no power to the power supplied by the source, 

the reflection and transmission coefficients are in themselves 

bounded by unity: 

When the reflection and transmission coefficients for a 

network are constructed, this must be taken into 

consideration, and forms must be found which ensure 

boundedness. 

|p{s)| < 1 (4.5) 

and 

| T ( S ) |  < 1 (4.6) 
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2. 3-port extensions 

The essence of the scattering parameters does not change 

when the network grows from one to three ports. Each port has 

a pair of transmission coefficients which describe how power 

flows from that port to the other two ports. Each port also 

has a reflection coefficient which describes how power is 

reflected back to the load at that port. Figure 4.2 shows a 

schematic representation of a general 3-port filter with a 

voltage source at port 1, and load resistances at ports 2 and 

3. The figure also defines the incident and reflected waves 

a(s) and b(s), respectively. These waves are used in the 

definition of the port transmission and reflection 

coefficients. The waves are in units of the square root of 

power. 

When the network is expanded from a 1-port to a 3-port, 

the scattering parameters are expressed in matrix form. The 

matrix is n x n, where n is the number of ports in the 

network, three in this case. The 3x3 matrix is designated 

S(s), and is written as: 

S(s) = 

Sii(s) Si2(s) S^3(S) 

Sgifs) 822(3) 823(51) 

831(3) 832(5) 833(5) 

(4.7) 
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bgXs) 

Z 

Figure 4.2. Example of a simple 3-port showing the 
definitions of the incident and reflected 
waves at the ports 

The main diagonal elements in the matrix are the 

reflection coefficients, which are defined as follows: 

a j ( s )  
(4.8) 

a.(s)=0 for 

This definition states that the reflection coefficient at any 

port is equal to the ratio of the Laplace transform of the 

reflected wave to the Laplace transform of the incident wave, 

given that the other two ports are undriven, and are 

terminated in their load impedances. 
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The off-diagonal elements of the matrix are the 

transmission coefficients for the 3-port and are defined as 

follows: 

® ) -
bm(s) 

aj(s) 
(4.9) 

a^(8)«0 for xfj 

This definition states that the transmission from one port 

(port m) to another (port j) is equal to the ratio of the 

Laplace transform of the reflected wave at the receiving port 

to the Laplace transform of the incident wave at the 

transmitting port, again assuming that the receiving ports are 

undriven and are terminated in their load impedances. 

One condition that the scattering matrix of a lossless 

network must satisfy is that it must be bounded-real and 

paraunitary. The definitions for these properties are as 

follows : 

DEFINITION 1.0: A square matrix A(s) is said to be 

bounded-real if it satisfies the following conditions: 
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(i) A(s) = A(s) for all s in the open RHP 

(ii) each of the elements of A(s) is analytic (4.10) 
in the open RHP 

n 

(iii) 1 - (j(i>)|^ >0 (i = 1 to n) for all w 
J.I 

where A(s) is defined as the matrix of functions created by 

negating the odd parts of the functions in the matrix A(s), 

and A(s) are the elements of A(s) with the complex conjugate 

of s substituted for s (s is the complex conjugate of s). 

The first condition states that the elements of S(s) are 

real if s is real. This can be ensured if the numerator and 

denominator polynomials of the elements have real 

coefficients. The second requirement states that the elements 

of S(s) can have no poles in the open right half of the 

complex s-plane (RHP). The third requirement states that each 

of the scattering parameters must be bounded by unity. Since 

the network is passive, no power can be added to that supplied 

by the source, so therefore the transmission and reflection 

coefficients cannot be greater than one. 

DEFINITION 2.0: An n x n matrix A(s) is called 

paraunitary if 
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A( S)A( - S )  =  Un, (4.11) 

where is the nth-order unit matrix. 

The paraunitary n x n matrix A(s) yields six equations 

which define the magnitude and phase relationships between the 

scattering parameters: 

Equation (4.12a) will be used in the derivation of the 

transmission and reflection coefficients for the 3-port 

networks. 

DEFINITION 3.0: An n x n rational matrix is the 

scattering matrix of a linear, lumped, time-invariant and 

lossless n-port network, normalizing to the n load resistances 

at the ports, if and only if it is bounded-real and 

paraunitary. 

The rules for the scattering matrix of the 3-ports are 

now specified, and with them are the conditions for the 

Sit (s) (-s) + (s) S,2 (-s) + Si3(s) Si3(-s) = 1 
512 (s) Si2 ( ~s) + S22 (s) S22 ( ~s) + S23 (s) S23 (-s) = 1 
513 (s) Si3(-s) + S23 (s) S23 (-s) + S33 (s) S33 (-s) = 1 

(s) Si2(-s) + 5^2(2) S22 ( -s) + 8^3(3) S23(-S) = 0 
(s) 8^3 (-s) + S12 (s) 823 (-s) + 8^2 (s) 833 (-s) = 0 

8^2 (s) 8^3 (-s) + 822 (s) 823 (-s) + 823 (s) 833 (-s) = 0 

(4.12a) 
(4.12b) 
(4.12c) 
(4.12d) 
(4.12e) 
(4.12f) 
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individual scattering parameters. The scattering parameters 

necessary to characterize and synthesize the Chebyshev and 

elliptic 3-port networks can now be theorized. 

3. Development of the scattering parameters 

This section details the development of the general form 

of the scattering parameters for the filter pairs. The logic 

of the development follows Belevitch (9). 

In all of the following sections, the frequency variable 

s will be restricted to the real-frequency axis, represented 

by s = jti). For convenience, some of the equations will be 

expressed as functions of s, and where clarity is of utmost 

importance, equations will be expressed as functions of jo. 

Consider the transmission of power from port 1 to port 2, 

the lowpass filter pathway. This is characterized by the 

transmission coefficient s^g. Define a Zero of Attenuation 

(attenuation zero) as the case in which all of the power input 

at port 1 is being transmitted to one of the other two ports. 

At frequencies at which the lowpass attenuation zeros occur, 

1 - Si2(jw)Si2(-jw) = 0 (4.13) 

(4.12a) can be rearranged: 
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1 - SI2(jw)SI2(-j<0) = 5,1 (j(0)5,1 (-jw) + SI3(jo)SI3(-jw) (4.14) 

At an attenuation zero in the lowpass direction, the left side 

of (4.14) is zero. Since S^(jw)S^(-jw) and S^(jw)S^^-jw) are 

squares of magnitudes, and are therefore positive for all 

frequencies, the right side of (4.14) can be zero only if 

S,, ( j(o)S,, (-jo) = 0 and S^^jw)S^(-jw) = 0. Similarly, for the 

highpass direction, 1 - S^^iw)S^(-jw) = 0 only when 

S„ ( j(i))S„ (-jo) = 0 and S^^jo)S^(-jo) = 0. Thus, the 

attenuation zero in the lowpass filter is accompanied by 

transmission zeros in the highpass direction, and in the 

reflection direction. The Chebyshev and elliptic filters are 

characterized by having ripples in the passband, and a steeper 

attenuation characteristic than the Butterworth filters. The 

ripples are of constant amplitude and have a peak value of 

unity. The frequencies at which the ripple peaks occur are 

the frequencies of the attenuation zeros, and are the 

frequencies at which F„(s) =0. 

The transducer power gain for the lowpass Chebyshev or 

elliptic 2-port filter is given by: 
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S,2(S)S12(-S) = -L (4.15) 
l+e^F^(s) 

where e is the ripple factor 

F„(s) is an approximation function 
(Chebyshev or elliptic) 

and the corresponding expression for the highpass filter is 

given by; 

S,3(s)Si3(-s) = -J: (4.16) 
l + G2F;(l/s) 

where e is the ripple factor 

Fn(l/s) is an approximation function 
(Chebyshev or elliptic) 

Thus a logical starting point in the construction of the 

transmission coefficients for the 3-port is to develop a form 

of (4.12a) which is based on (4.15) and (4.16). Each of the 

three factors in (4.12a) can be rational, and each must have 

the same denominator. It is known from (4.14) and the 

previous discussion that when either of the transmission 

pathways has an attenuation zero, the magnitude of the 

reflection coefficient, as well as the other transmission 

factor, must have transmission zeros. This is true for 

attenuation zeros in the lowpass direction as well as the 

highpass direction. Therefore, the term involving the 

reflection coefficient, S,, ( jo) S,, (-ju) , must have zeros for all 

of these attenuation zeros. Since the attenuation zeros of 
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the transmission coefficients are the frequencies at which the 

Chebyshev or elliptic polynomial have zeros, the polynomial 

itself can be used as the numerator term in the factor. The 

form of the numerator of the reflection coefficient term, 

S,, (s)S^, (-S) , can therefore be; 

FJ(s)FJ(1/S) (4.17) 

The two transducer power gains should exhibit transmission 

zeros when their counterparts exhibit attenuation zeros. In 

order to ensure this, the numerators of the lowpass and 

highpass transmission terms can be made to contain the 

approximation polynomial from the denominator of the highpass 

and lowpass transmission terms, respectively. Thus, as a 

polynomial zero induces an attenuation zero in one 

transmission term, it provides a transmission zero for the 

other transmission term. The common denominator for the three 

terms can be the product of the denominators from (4.15) and 

(4.16): 

n —n (4-iG) 
[1 + e2F;(s) ] [1 + e^Fl(l/s)] 

In order to preserve the form of (4.15) and (4.16) while 

including the common denominator in (4.18), the numerators of 
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(4.15) and (4.16) are multiplied by the term in the 

denominator of (4.18) which is missing in the denominator of 

(4.15) and (4,16). The scattering parameter equation 

theorized up to this point can be written as; 

F ' ( S ) FJ(1/S )  

[1 + €2F:(s)] [1 + e2F^(l/s)] 

1 4- e^F;(l/s) 

[1 + £2p2(s)] [1 + e2F^(l/s) ] 

1 + e^F^(s) 

[1 + e^F^fs) ][1 + e2F^(l/s) ] 
= 1 

(4.19) 

This equation does not balance, but can be made to balance if 

the "1" terms in the numerators of the second and third terms 

are made to equal 0.5, and the numerator of the first term is 

multiplied by The result is: 

6^F;(S)F;(1/S) _ ̂ 

[1 + c2fJ(S) ] [1 + e^Fl(l/s) ] 

0.5 + c^F^fl/s) ^ 

[1 + e2F2(s)][l + (2^2(1/3) ] 

0.5 + e^F^fs) ^ ^ 

[1 + e^F^fs) ] [1 + €^fI(1/S)] 
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The choice of 0.5 as the constants in tne second and third 

terms of (4.20) is done to preserve to symmetry of the 

magnitude responses. Other combinations of constants are 

possible, but were not investigated. The sum of the constants 

must be 1. 

The squared magnitudes of the scattering parameters are thus; 

e^F^(s)Fj(l/s) 
Sii(s)S„(-s) = " " (4.21a) 

[1 + ] [1 + e^F^Cl/s)] 

0.5 + e^pjci/s) 
S,2(s)Si2(-s) = 2 (4.21b) 

[1 + c2p2(s)][i + e^F^d/s)] 

0.5 + eZpffs) 
S,3(s)Si3(-s) = 2 (4.21c) 

[1 + e2F^(s)][l + e2p2(i/sj3 

4. Perfect Chebyshev and elliptic filter pairs 

A perfect Chebyshev or elliptic filter pair can be 

described as having pure Chebyshev or elliptic transmission 

characteristics in the lowpass and highpass directions. In 

practice, this implies that the transducer power gains 

S^2(s)S,2(-s) and (s)8,3(-s) are of exactly the forms 

described by (4.15) and (4.16), respectively. Using this 

ideal form for the transducer power gains, (4.12a) becomes 
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[1 + eZpZfs) ] [1 + c^Fjd/s)] 

1 + €^f;(1/S) 1 

[1 + €2F2(I/s) J [1 + e^FliS)] 

1 + €^FI(s) 1 

[1 + €^fI(s)] [1 + €2fJ(1/s)] 
= 1 

(4.22) 

The numerator of the first term, the reflection term, will be 

equal to -1 whenever the approximation polynomial F(s) is 

equal to zero. In the Chebyshev and elliptic cases, these 

zeros of F(s) are the frequencies at which the attenuation 

zeros occur, and they occur at finite frequencies in the 

passband, as opposed to the zero and infinite frequencies. 

Since the terms in (4.22) are all magnitudes, and therefore 

must always be positive, this negative value is not allowed. 

This argument shows that perfect Chebyshev or elliptic filter 

pairs do not exist. 

Perfect Butterworth filter pairs do exist, however. If 

the approximation polynomial in (4.20) is that of the 

Butterworth characteristic, F(s) = s", then F(s)*F(l/s) = 1, 

and the numerator of the first term in (4.20) is equal to 

zero. The reflection coefficient is therefore zero. The 

resulting transducer power gains are those of the constant-

resistance Butterworth filter pair. 
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5. Approximate Chebyshev and elliptic filter pairs 

The transmission terms (4.21b) and (4.21c) each contain 

the same form as described in (4.15) and (4.16). However, 

each term also has a multiplicative term which is used to make 

the equation balance and match the form of (4.12a). These 

terms are 

(4.23) 
1 t «ZPn(l/s| 

in (4.21b) and 

0.5 + 6%(S) 

1 + €2F^(s) 
(4.24) 

in (4.21C). Equation (4.19) can be made to match the form of 

(4.12a) by subtracting unity in the numerator of the first 

term, the reflection term, of (4.19). This is not allowed, 

however, as pointed out in the last section. The 

multiplicative factors in (4.21b) and (4.21c) are nece ,ary, 

then, and represent a departure from the ideal desired result. 

The result is that the transducer power gains and reflection 

coefficients described in (4.21) are approximations to those 
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of the perfect filter pairs. The question which arises is 

"How well does the approximation represent the ideal case?" 

The traditional reason for using the Chebyshev or 

elliptic filters is to get a faster attenuation characteristic 

beyond the cutoff frequency. That criterion will be used here 

to determine whether the approximation is good enough to be 

used. 

These functions were simulated using the MATHCAD personal 

computer utility. Fourth-order Chebyshev polynomials were 

used as the approximation polynomials. Plots of the 

transducer power gains (4.21b) and (4.21c) vs. frequency for 

the lowpass and highpass filters are shown in figure 4.3. 

Figure 4.4 shows the desired transducer power gain response 

from a perfect Chebyshev pair. Figure 4.5 shows a plot of 

(4.23), the factor associated with the lowpass filter, and 

also a plot of the perfect Chebyshev lowpass filter transducer 

power gain response, based on (4.15). The resulting lowpass 

response in figure 4.3 results from the product of the two 

plots in figure 4.5. The multiplicative factor can be seen to 

decrease in value before the Chebyshev response does, and this 

causes the product of the two to decrease also, causing an 

effective rounding off of the Chebyshev response, as seen in 

figure 4.3, The multiplicative factor decreases to a limit 

value of 0.5, and the effect of this is to cause the response 
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in figure 4.3 to decrease faster than the Chebyshev response, 

thereby preserving the faster attenuation characteristic of 

the Chebyshev filter. 

MAGNITUDE 
OF 

OUTPUT 

LOWPASS 
FILTER 

^ HIGHPASS 
( FILTER 

1 

J V 
0.1 0.5 1.0 5.0 

FAEOUENCY. RADIANS PER SECOND 
10.0 

Figure 4.3. Plot of transducer power gain vs. frequency 
for derived Chebyshev filter pair 

A comparison of figures 4.3 and 4.4 reveals the effect of 

the factors (4.23) and (4.24). These factors cause the 

behavior of the individual filters to alter around the cutoff 

frequency. The peak in the response near the corner frequency 

in figure 4.4, the ideal Chebyshev pair, is missing and 

rounded off in the proposed filter pair, figure 4.3. The 
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MAGNITUDE 
OF 

OUTPUT 

0 
0.1 0.5 1.0 5.0 10.0 

FREQUENCY, RADIANS PER SECOND 

Figure 4.4. Plot of transducer power gain vs. frequency 
for perfect Chebyshev filter pair 

slope of the response characteristic in the transition region 

remains steeper than in the Butterworth filter pairs, however. 

This is the desirable characteristic for the Chebyshev 

filters. The transducer power gain and the reflection 

coefficients derived in (4.21) are therefore valid for use as 

approximations to the Chebyshev filter pairs. Similar results 

were obtained for the third-order elliptic filter pairs. 

•HIGHPASS 
FILTER 
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Figure 4.5. Plot of perfect Chebyshev transducer power 
gain and the multiplicative error factor 
which appears in the proposed filter pair 

6. Positive-real input admittance 

In order for the filter pair to be physically realizable, 

its input admittance must be positive real, and the input 

admittance of the associated lowpass and highpass filters must 

also be positive real. The input admittance for the network 

as calculated with (2.1) is always positive real, as 

demonstrated by the following proof: 
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Theorem 4.1 (Positive real admittance): The input 

admittance, of the lumped passive reciprocal 3-port as 

calculated with (2.1) using (4.5) is always positive real. 

Proof: Necessary and sufficient conditions for a complex-

valued rational function, Yj^(s), of the complex frequency, s, 

to be positive real are: 

a) Y;^(s) is real when s is real, and 

b) Re{Y^(s)) > 0 when Re{s}>0. 

Since p(s) is a rational function with real coefficients, its 

substitution into Y,^ will not yield an input impedance with 

complex coefficients. Condition a) is therefore satisfied by 

(2.1). Condition b) can be shown to be satisfied by expanding 

the real part of (2.1) with p expanded as a+jb, where j is the 

imaginary unit, as follows: 

Re {Y,„} = (4.25) 
1 + 2a + (ar + br) 

The numerator of (4.25) is positive if the modulus of a and b, 

a^ + b^, is less than 1. Since the magnitude of the 

reflection coefficient is the modulus of a and b, and is 

always less than 1, then the numerator of (4.25) will always 
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be positive, and condition b) is satisfied. Therefore, Y,.^ is 

always positive real. 

B. General Method 

In the following sections, the scattering parameters and 

networks will be developed for the third- and fourth-order 

cases of the Chebyshev and elliptic networks. A general 

method, or algorithm, will be used. This algorithm consists 

of the following steps: 

1. Choose an appropriate approximating function. A 

Chebyshev polynomial of the first kind is appropriate for the 

Chebyshev filter, and a Chebyshev rational function resulting 

from the Jacobian elliptic integral of the first kind is 

appropriate for the elliptic filters. 

2. Calculate an expression for the magnitude-squared value 

of the reflection coefficient, using (4.21a) with the 

approximation function. 

3. Factor the magnitude-squared of the reflection 

coefficient into its left and right half of the s-plane (LHP 

and RHP) poles and zeros. 
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4. Form the minimum-phase reflection coefficient from the 

LHP poles and zeros found in step 3. Use of the minimum-phase 

reflection coefficient maximizes the DC gain of the lowpass 

filter in the pair, and the gain at infinity for the highpass 

filter (17). 

5. Calculate from (2.13) based on the reflection 

coefficient found in step 4. This admittance will be 

positive-real. 

6. Expand Y,^ found in step 5 into two separate parts 

conforming to the input impedance of standard lowpass and 

highpass filters: 

Ylowpa» - ^ (4.26) 
b^s" + ... + bo 

(4.27, 
d„s" + ... + do 

7. Test the input impedances for the two 2-ports to be sure 

that they are positive real. If they are not, the synthesis 

is not possible. 
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8. Synthesize the input impedances using Darlington's 

method, assuming a 1-ohm load resistor. 

Steps 6 and 7 require the positive-real input admittance 

to be expanded into two separate parts, one representing the 

input admittance of the lowpass filter and the other 

representing the input admittance of the highpass filter. In 

general, the input admittance of an nth-order filter pair will 

be a rational function numerator and denominator of degree 2n. 

The denominator of the admittance is comprised of the 2n 

distinct zeros found in step 3. In general, the even-order 

filter pairs will have n quadratic factors in the denominator 

of Yj^, and the odd-order filter pairs will have n quadratic 

factors and 2 factors on the negative real axis. It is not 

immediately obvious which quadratic factors and real factors 

are used together to form the denominators of the input 

admittances for the lowpass and highpass filters. Since there 

are 2n factors which need to be joined into two denominators, 

there are several combinations which must be tried in order to 

find combinations which yield positive-real input admittances 

for the lowpass and highpass filters. The number of 

combinations for the even-order networks is equal to 2n 

objects taken n at a time: 2 for the 2nd-order network, 6 for 

the 4th-order network and so forth. The number of 
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combinations for the odd-order networks is two times that of 

the next lower order network: 4 for the 3rd-order network, 12 

for the 5th-order network and so forth. 

The criterion for acceptance of one expansion trial is 

that all of the coefficients a and b in (4.26) and (4.27) be 

strictly positive. Zero coefficients are not allowed, since 

positive-real rational functions must not have missing terms 

in the numerator and denominator polynomials (18). The trials 

which meet the criteria must still be tested for positive-

realness, since it has yet to be proven that the expansion of 

a positive-real admittance always yields two positive-real 

admittances which conform to (4.26) and (4.27). 

C. Chebyshev 3-port Filters 

1. Second-order filter pairs 

The approximation function chosen is the second order 

Chebyshev polynomial: 

C2=2af - 1 = cos(2 cos'l w) (4.28) 

This function is used in (4.20a) to create the resulting 

reflection coefficient magnitude: 
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c , = \c ( _ 0.0595S®+0.2980S^+0.4910S^+0.2980S2+0.0595 
- 5 7 : 5 

0.548s°+0.786s'^+1.735s^+0.7863^+0. 548 

Since 

|Si,(C0)|2 = Si,(ja))S„(-jo) (4.30) 

the reflection coefficient S,,((i)) can be created from the LHP 

roots of its magnitude-squared. The roots of (4.29) are found 

using a computer program which implements Laguerre's method to 

find the complex roots of a complex polynomial. The roots are 

listed in table (4.1). 

The reflection coefficient, is created from the LHP 

roots listed in table 4.1. as follows: The reflection 

coefficient, as previously mentioned, must be bounded real, 

and can therefore have no RHP poles. Therefore, the 

denominator of the reflection coefficient is constructed using 

the LHP roots in table 4.1. The reflection coefficient is 

desired to be minimum phase, having no RHP zeros, so the LHP 

numerator roots in table 4.1 are used to create the numerator. 

The result is 
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„ .V _ 0.244s^+0.610S2+0.244 ~,v 
-

0.740s4 + 1.750s3 + 2.600s2+1.750s+0.740 

The input admittance of the 3-port can be found directly 

using (2.13), and is found to be: 

V 0.495s^+1.750s' + 1.990s2+1.750s+0.495 
*ln - T Î -5 

0.983S^+1. 750s'+3 .2103^+1. 750S + 0, 983 

The input admittance can be split into two parts, representing 

the admittance seen at the input of the lowpass filter and the 

highpass filter. To do this, expressions (4.26) and (4.27) 

are used which represent the form of the input admittance for 

a lowpass and a highpass filter, respectively. These are 

summed, and equated to (4.32) as follows; 

„  ̂ + ... + ao, s(c„s"-  ̂ 4- ... + Ci) 
y 0 ^ 

b^s" + ... + bo d„s" + ... + dg 

0.495s4+1.750s3+1.990sZ+1.750s+0.495 

0.983s4+1.750s3+3.210s2+1.750s+0.983 

The unknown coefficients of the resulting equation are then 

solved, and the result is: 

=  0 > 3 7 4 s  +  0 . 1 0 8  ^  s ( 0 . 2 2 7 s + 0 . 7 8 4 )  ^  0 . 2 7 6 1  ( 4 . 3 4 )  
s ^  +  0 . 5 7 5 S + 0 . 4 7 7  s ^ + l . 2 0 5 s + 2 . 0 9 5  
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Table 4.1. Roots of Equation (4.29) 

Root Numerator Denominator 
Number Root Root 

Value Value 

1 +jl.4140 +0.4701+j0.6622 

2 +jl.4140 +0.4701-j0.6622 

3 -jl.4140 -0.4701+j0.6622 

4 -jl.4140 -0.4701-j0.6622 

5 +j0.7070 +0.7128+jl.0040 

6 +j0.7070 +0.7128-jl.0040 

7 -jo.7070 -0.7128+jl.0040 

8 -jo.7070 -0.7128-jl.0040 

The 0.2761 Siemens (mho) conductance represents a resistor 

which must be placed across the input port in order to make 

the input admittance separate into lowpass filter and highpass 

filter parts. This element represents the minimum real part 

of the input admittance when s = ju. This shunt resistor and 

the source resistor can be replaced by a Thevenin equivalent 

circuit. This new input circuit consists of a new source 

resistor which is equal to the parallel combination of the 

original resistors, and a new voltage source which is equal to 
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the original source times the voltage divider ratio of the 

original resistors. This replacement was avoided in this 

research because it was thought to be more important to show 

the actual derived structure. 

The input admittances, and therefore the impedances, of 

the lowpass and highpass filters are now known, as well as the 

transmission characteristics of the overall lowpass and 

highpass pathways. The task now is to synthesize the lowpass 

and highpass filters as two 2-port networks as shown in figure 

2.2. The Darlington procedure can be used to convert the 

input admittances of the two 2-ports into corresponding y^g and 

yji parameters. Cauer synthesis can then be used to realize 

the filters (18). 

The Darlington procedure along with the Cauer synthesis 

yields the network in figure 4.6. The circuit shown in figure 

4.6 was simulated using the SPICE circuit analysis program. A 

plot of the frequency response of the circuit outputs is shown 

in figure 4.7. As can be seen, the frequency response at the 

passband frequency extreme (DC for the lowpass, infinity for 

the highpass) is attenuated by the ripple amount. This is one 

characteristic of Chebyshev filters. The response of the odd-

order filters is not attenuated at the extremes. The passband 

of the two filters contains slightly more ripple than the 0.5 

dB design value. The excess is not extreme, however. The 
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M=l.8l5H 
2.700 H 

4.330 H 4.407 OHM 
0.76 H 

IDHM 

1.094 F 

M=0.375H 
0.374F 

IN 

0.765 OHM 0.900 H 0.157 H 

1.282F 

IDEAL 

Figure 4.6. Second-order Chebyshev filter pair 

highpass response is about 10 dB lower than the lowpass 

response. This effect is caused by the voltage ratio of the 

transformer which provides the pole at infinity, which in this 

case is the only transformer in the highpass filter. 
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Figure 4.7. Frequency response of the second-order 
Chebyshev filter pair. Analysis was 
performed using the SPICE circuit analysis 
program 

2. Third-order filter pairs 

The approximation function chosen is the third-order 

Chebyshev polynomial: 
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C; = 4af-3w = cos (3 cos"^ o>) , | a)| < 1 

= cosh(3 cosh"^ o) , I <i)| > 1 (4.35) 

Use of this polynomial in (4.21a) results in the reflection 

coefficient magnitude: 

S„(S)S„(-s)= -2.1433s'°-8.9304s»-13.5891s' (4.36) 
1.9520s'^+0.7847s^°-7.8324s®-14.5891s^ 

-8.9304s^-2 .14333^ 

-7.8324s4+0.7847s2+1.9520 

The roots of (4.36) are listed in table 4.2. 

The minimum-phase reflection coefficient is created from 

the LHP roots of the numerator and denominator of (4.3 6) as 

listed in table (4.2). The result is: 

S„(s)= 1.4640s5 + 3 . OSOOs^ (4.37) 
1.3971sf+4.7268s5+8.3445s4+10.6156s3 

+1.4640s 

+8.3445s^+4.7468s+1.3971 

The input admittance is found directly from (2.13) and is: 
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Table 4.2. Roots of Equation (4.36) 

Root Numerator Denominator 
Number Root Root 

Value Value 

1 +j0.1547 +0.2742+j0.8945 

2 +j0.1547 +0.2742-j0.8945 

3 -jo.1547 -0.2742+j0.8945 

4 -jo.1547 -0.2742-j0.8945 

5 +j 0.8660 +0.3132+jl.0219 

6 +j0.8660 +0.3132-jl.0219 

7 —j 0.8660 -0.3132+jl.0219 

8 -jo.8660 -0.3132-jl.0219 

9 0 +0.6265 

10 0 —0.62 65 

11 +1.5962 

12 -1.5962 

1.3971s6+3.2828s5 + 8.3445s4+7.5656s3 

1. 397 Is'^+e. 21085^+8.34453^ + 13. 6656s' 

+8.3445s^+3.2828s+1.3971 

+8.3445s^+6.2108s+l.3971 
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The input admittance is separated into lowpass and highpass 

filter parts as in the second-order case and the result is: 

V _ 0.4566S2+0.1961s+0.1912 -
 ̂in ~  ̂4 . J 

s^+0.6014s^+0.8114s + 0,2110 

+ 0-90555^+0.92925^+2.164 is 

s'+3.8440s^+2.8493s+4.7378 

+ 0.9425 

The Darlington procedure with the Cauer synthesis yields the 

realization shown in figure 4.8. 

The circuit shown in figure 4.8 was simulated using the 

SPICE circuit analysis program. The frequency response plots 

for the lowpass and highpass filters are shown in figure 4.9. 

The plots show the response at a maximum at the passband 

extremes for the two filters, which is expected for the odd-

order Chebyshev filter. The passband ripple is about 0.5 dB, 

the design value. 

3. Fourth-order filter pairs 

The approximation function chosen is the fourth-order 

Chebyshev polynomial: 

C^Cw) = (4.40) 
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2.193 H 
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OHM 0.843 H 
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2.000F JL 0.678 H 

LOHM 

2.037F 

0.456 F m-0.286h 

0.167 H 0.376 
OHM 

0.491 H 

O.I20H 

Figure 4.8. Third-order Chebyshev filter pair 

The reflection coefficient magnitude is calculated using 

(4.21a) and is: 
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_ .95263^^17.14638^ + 107.8790s12 
1l(S)S„(-s) -

8.76068^^32.7623s^+117.6390s^ 

+293. 6310s^°+403.90605^+293. 63 lOs^ 

+295.5830s^°+405.1510s®+295.5830s'^ 

+107.87905^+17.14 638^+0.952 6 

+117.63905^32.76235^+8.7606 
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Table 4.3. Roots of Equation (4.41) 

Root 
Number 

Numerator 
Root 
Value 

Denominator 
Root 
Value 

1 +j0.3827 +0.1649+j0.9555 

2 +j0.3827 +0.1649-j0.9555 

3 -jo.3827 -0.1649+j0.9555 

4 -jo.3827 -0.1649-j0.9555 

5 +j0.9239 +0.1754+jl.0163 

6 +j0.9239 +0.1754-jl.0163 

7 -jo.9239 -0.1754+jl.0163 

8 -jo.9239 -0.1754-jl.0163 

9 -jl.0824 +0.4234+j0.4209 

10 -jl.0824 +0.4234-j0.4209 

11 +jl.0824 +0.4234+j0.4209 

12 +jl,0824 +0.4234-j0.4209 

13 -j2.6131 +1.1878+jl.l810 

14 -j2.6131 +1.1878-jl.1810 

15 +j2.6131 -1.1878+jl.l810 

16 +j2.6131 -1.1878-jl.1810 

The roots of (4.41) are listed in table (4.3). The LHP roots 

in table (4.3) are used to construct the minimum-phase 

reflection coefficient: 
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g  0 . 9 7 6 0 s ° + 8 . 7 8 3 9 s ' ^ + 1 5 . 7 3 7 5 s ^  ( 4 . 4 2 )  

2  .  9 5 9 8 s ® f  1 1 .  5 5 1 2 3 ^ + 2 8  .  0 7 5 7 s ' ^ + 4 2  . 1 8 5 8 3 ^ + 5 1 .  3 5 4 5 3 *  

+ 8 . 7 8 3 5 3 ^ + 0 . 9 7 6 0  

+ 4 2 . 1 8 5 8 3 ^ + 2 8 .  0 7 5 7 3 ^ + 1 1 . 5 5 1 2 3 + 2 .  9 5 9 8  

The input admittance to the filter pair i3 calculated from 

(2.13) and is: 

y .  =  1 . 9 8 3 8 3 ^ + 1 1 . 5 5 1 2 5 ^ + 1 9 . 2 9 1 7 3 * ^  

3 . 9 3 5 8 S ® + 1 1 . 5 5 5 1 2 3 ^ + 3 6 . 8 5 9 6 3 * ^  

+ 4 2  . 1 8 5 8 s ^ + 3 5  .  6 1 6 9 s * + 4 2  . 1 8 6 1 3 ^  

+ 4 2 . 1 8 5 8 s ' + 6 7 . 0 9 2 0 3 ^ + 4 2  . 1 8 6 1 s ^  

+ 1 9 . 2 9 2 5 3 ^ + 1 1 . 5 5 1 5 3 + 1 . 9 8 3 9  

+ 3 6 . 8 5 9 5 3 ^ + 1 1 . 5 5 1 5 3 + 3 . 9 3 5 7  

The input admittance can be separated into lowpass and 

highpass filter parts and the result is: 

Y = 0 . 4 7 8 4 3 ^ + 0 . 1 6 2 6 3 ^  +  0 . 4 2 3 8 S  +  0 . 0 8 6 1  

3 ^  +  0 . 6 2 8 0 3 ^ + 1 . 4 8 2 0 3 ^ + 0 .  5 3 1 2 3  +  0 . 2 3  0 0  

0 . 4 5 7 l s * + 2 . 0 6 5 3 s '  +  l . 4 2 8 1 3 ^  +  2  . 8 8 8 0 s  

S* + 2 . 3 4 3 7 s '  +  6 . 8 7 9 8 5 ^ + 3 .  6 9 8 8 3  +  6 . 2 5 6 0  

0 . 1 3 0 3  

The Darlington procedure and Cauer synthesis yield the 

realization shown in figure 4.10. 
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Figure 4.10. Fourth-order Chebyshev filter pair 
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D. Elliptic 3-port Filters 

The elliptic filter pair requires the creation of 

Chebyshev rational functions from the Jacobian elliptic 

integral of the first kind. The creation of these functions 

requires the evaluation of the Jacobian elliptic sine and 

cosine functions. These rational functions are to be used as 

the approximation polynomials in the expansion of (4.21a) for 

the second- and third-order cases which will be evaluated in 

the following sections. The derivation of the rational 

functions will not be treated here. Chen (17) has a very good 

treatment of the origins of the Chebyshev rational functions 

and their use in elliptic filters. The numerical examples of 

the functions used in this research were taken from this 

source. 

1. Second-order filter pairs 

The Chebyshev rational function which will be used in the 

second-order filter pair example has a selectivity factor of 

1.4. This is a measure of the steepness of the transition 

band between the passband and the stopband. Unlike the 

Butterworth and Chebyshev filters, the transition steepness is 

a variable parameter in the elliptic filter. The rational 

function, after evaluation of the elliptic sine and cosine 

functions, is; 



www.manaraa.com

71 

F2(ti>) = 1.30373 0'58824-uf (4.45) 
1-0.30012(1)? 

This function is used in (4.21a) with a ripple factor which 

yields 0.5 dB ripple. The resulting reflection coefficient 

magnitude is: 

S„(S)S„(-S) = 0.0426s'+0.1949s'»0.3082s( (4.46) 

0. 9125s®+3 . 3086s*+5.5811s4 

+0.1949s2+0.0426 

+3.3086s2+0.9125 

The roots of (4.46) are listed in table 4.4. The minimum-

phase reflection coefficient is constructed from the LHP poles 

and zeros in table 4.4: 

c _ 0.068329^ + 0.0006341s'+0. 1563s2 
Sii(S) = _ (4.47) 

S^+2.7384S^+3.9187S^ 

+0.000634Is+0.06832 
+2.0522S+1 

The input admittance of the filter pair is calculated using 

(2.13), which results in: 

V 0.8900s^+2.6152s^+3.5939s2 .. 
* l n  -  7  ;  :  ( 4 . 4 b )  

1.0205s4+2.6165s3+3.8925s2 

+ 1 . 9 5 9 7 S + 0 . 8 9 0 0  

+ 1 . 9 6 0 9 S + 1 . 0 2 0 5  
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Table 4.4. Roots of Equation (4.45) 

Root Numerator Denominator 
Number Root Root 

Value Value 
1 +0.001720+j0.7670 +0.2284+30.5936 

2 +0.001720-j0.7670 +0.2284-j0.5936 

3 -0.001720+j0.7670 -0.2284+j0.5936 

4 -0.001720-00.7670 -0.2284-j0.5936 

5 +0.002923+jl.3038 +1.1408+jl.0818 

6 +0.002923-jl.3038 +1.1408-jl.0818 

7 -0.002923+jl.3038 -1.1408+jl.0818 

8 "0.002923-jl.3038 -1.1408-jl.0818 

This input admittance can be expanded into separate lowpass 

and highpass parts as follows: 

Y- = 0 . 0 5 6 2 S + 0 . 0 0 7 6 4 2  

s 2  +  0 . 4 2 6 5 S - ( - 0 . 3 9 9 5  

+  P ' O l S l s f + O . 3 1 1 5 s  

3 ^ + 2 . 1 3 7 4 3 + 2 . 5 0 3 3  

+  0 . 8 5 3 0  

Synthesis is carried out using the Darlington procedure with 

the Cauer synthesis, yielding the circuit shown in figure 

4.11. 

The circuit in figure 4.11 was simulated using the SPICE 

circuit analysis program. The frequency responses of the 
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Figure 4.11 Second-order elliptic filter pair 

lowpass and highpass filters as calculated by SPICE are shown 

in figure 4.12. As in the even-order Chebyshev case, the 

even-order elliptic response is at a minimum at the passband 

frequency extremes. The ripple, as in the Chebyshev case, is 

higher than the design value. The stopband of the elliptic 

response is devoid of ripples. This is because the synthesis 
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of the network was carried out using the reflection 

coefficient as a source for the input admittance. The 

stopband ripple characteristic is present in the reflection 

coefficient, but very small in magnitude, and does not yield 

transmission zeros. The transmission coefficients of the 

elliptic filter pairs do contain stopband transmission zeros, 

however, and are realizable by use of the Brune and Gewertz or 

Bode methods (18). The preservation of the stopband ripples 

was not considered important to this research, and the 

Darlington synthesis was used to preserve the passband 

ripples. 

2. Third-order filter pairs 

The rational function chosen for use in the third-order 

example has the same parameters as in the previous example, 

and is represented as: 

fjcw) = 3.1163 (ù 0'81206-uf (4.50) 
1-0.4143%; 

This function is used in (4.21a) with a ripple factor which 

yields 0.5 dB ripple to yield the following reflection 

coefficient magnitude: 
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Figure 4.12. Frequency response of the second-order 
elliptic filter pair 

sii(s)sii(-s) = 
-0.4436s^°-1.8131s°-2.7398s^ 

0. 5678S'2+0. 8668S^°-0. 9781S®-2 . 6251s'^ 

-1.8131s^-0.4436s^ 

-0.9781s4+0.8668s2+0.5678 

(4.51) 

The roots of (4.51) are listed in table 4.5. The minimum-

phase reflection coefficient is constructed from the LHP poles 

and zeros in table 4.5: 
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Table 4.5. Roots of Equation (4.50) 

Root Numerator Denominator 
Number Root Root 

Value Value 

1 +0.005797+j0.1547 +0.1828+j0.9153 

2 +0.005797-j0.1547 +0.1828-j0.9153 

3 -0.005797+j0.1547 -0.1828+j0.9153 

4 -0.005797-j0.1547 -0.1828-j0.9153 

5 +0.007142+1.1099 +0.2098+jl.0507 

6 +0.007142-1.1099 +0.2098-jl.0507 

7 -0.007142+1.1099 -0.2098+jl.0507 

8 -0.007142-1.1099 -0.2098-j1.0507 

9 0 +0.8003 

10 0 -0.8003 

11 +1.2495 

12 -1.2495 

g ^ 0.6661ss + 0.0172s4 + 1.36613s3 

0.7535s^+2.1363S5 + 3.6035S^ + 4.5390S' 

+0.0172s^+0.6660s 

+ 3.60345^+2 .13635 + 0.7535 

The input admittance for this filter pair is calculated 

directly from (2.13) and is: 
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Y- (s) = 0.7535s*+1.4703s5+3 . 5862s^+3 .1778s^ 

0.7535s*+2.8023sf+3.6207s4+5.9003s3 

4-3. 5862s^+1.4702s + 0. 7635 

+ 3. 6207S2+2.8023S4-0.7535 

This input admittance can be expanded into separate lowpass 

and highpass parts as follows; 

0.4391s2+0.1628s+0.2484 

s'+O.58513^+0. 8744s + 0.2790 

+  0 . 8 9 0 4 s 3 + 0 . 5 8 3 4 s 2 + l . 5 7 3 7 s  

s ' + 3 . 1 3 3 9 s 2 + 2 . 0 9 7 1 S + 3 . 5 8 4 2  

+  0 . 1 0 9 6  

This input admittance can be synthesized using Darlington's 

procedure to obtain the y-parameters and using the Cauer 

synthesis to obtain the circuit structure. The resulting 

circuit is shown in figure 4.13. 

The circuit in figure 4.13 was simulated using the SPICE 

circuit analysis program. Figure 4.14 shows the frequency 

responses of the lowpass and highpass filters calculated by 

SPICE. The responses are at maxima at the passband frequency 

extremes, as they should be. The ripple value is near the 

design value. 
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1.123 
OHM 

1.140 H 0.495 H 

0.5281 
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1.225 F 

0.440F IN 
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0.355 H 0.816 H 

0.3551 
1.900F__ 0.128 H 

1.460F 

Figure 4.13. Third-order elliptic filter pair 
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Figure 4.14. Frequency response of the third-order 
elliptic filter pair 
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V. SUMMARY AND CONCLUSIONS 

A. Existence of Chebyshev and elliptic 3-Port Filters 

The goal of this research was to find filter pairs which 

exhibit the Chebyshev and elliptic response characteristics. 

The main result of the research was the discovery of a set of 

reflection and transmission coefficients which satisfy the 

fundamental requirements for passive networks, and which 

exhibit response characteristics which approximate the 

Chebyshev and elliptic characteristics. The reflection 

coefficient was used to generate a positive-real input 

admittance for a resistively terminated network. The input 

admittance was shown to be always positive-real, and 

expandable into a shunt resistor in parallel with two new 

input admittances, one representing a lowpass filter, and the 

other a highpass filter. The new input admittances were shown 

to be positive real, and therefore capable of being 

transformed into real networks. Several examples were 

developed to show this. Odd and even order cases were shown 

to exist. The separation of the input admittance brought out 

a shunt resistance which represents the minimum real part of 

the input admittance. This resistor can be combined with the 

source resistor in a Thevenin equivalent circuit, but this 

technique was not used. 
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Also shown was a result that perfect Chebyshev and 

elliptic filters do not exist, but that perfect Butterworth 

filter pairs do exist. When the Butterworth approximating 

monomials are substituted into the defining equation for the 

reflection coefficient as derived in this research, the 

resulting filter pair has constant input resistance. 

B. Realization of the Filters 

Once the input admittances of the filters composing the 

filter pairs were derived, the lowpass and highpass filters 

were synthesized. In all cases presented, the synthesis was 

carried out using the Darlington procedure to derive the 

network admittance parameters, and the actual synthesis of the 

circuits was done using the Cauer synthesis technique. The 

separation of the input admittance into separate lowpass and 

highpass filter sections was shown to require a shunt 

resistance which dissipated some power from the input. The 

value of this shunt resistor increased rapidly with filter 

order, however, and was almost negligible in the fourth-order 

case. 
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VI. SUGGESTIONS FOR FURTHER STUDY 

A. Non-complementary Filter Pairs 

This research was limited to filter pairs which are 

complementary, a case in which the lowpass is a function of s, 

while the corresponding highpass filter is a function of 1/s. 

In point of fact, the scattering parameters in (4.21) are not 

strictly dependent on this relationship, and will work with 

any set of approximation functions. This is true because the 

nature of the approximation function is not what causes (4.20) 

to balance. Further study could investigate the effects of 

other approximation functions. 

The research was also limited to the case in which the 

filters in the filter pair are of the same order. Unequal 

orders in the lowpass and highpass can be explored. This case 

is easily investigated by using approximation polynomials of 

different order. 
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